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CHAPTER 3

Equilibrium Computation for
Two-Player Games in Strategic

and Extensive Form

Bernhard von Stengel

Abstract

We explain algorithms for computing Nash equilibria of two-player games given in strategic form or
extensive form. The strategic form is a table that lists the players’ strategies and resulting payoffs.
The “best response” condition states that in equilibrium, all pure strategies in the support of a
mixed strategy must get maximal, and hence equal, payoff. The resulting equations and inequalities
define polytopes, whose “completely labeled” vertex pairs are the Nash equilibria of the game. The
Lemke–Howson algorithm follows a path of edges of the polytope pair that leads to one equilibrium.
Extensive games are game trees, with information sets that model imperfect information of the players.
Strategies in an extensive game are combinations of moves, so the strategic form has exponential
size. In contrast, the linear-sized sequence form of the extensive game describes sequences of moves
and how to randomize between them.

3.1 Introduction

A basic model in noncooperative game theory is the strategic form that defines a game
by a set of strategies for each player and a payoff to each player for any strategy profile
(which is a combination of strategies, one for each player). The central solution concept
for such games is the Nash equilibrium, a strategy profile where each strategy is a best
response to the fixed strategies of the other players. In general, equilibria exist only
in mixed (randomized) strategies, with probabilities that fulfill certain equations and
inequalities. Solving these constraints is an algorithmic problem. Its computational
complexity is discussed in Chapter 2.

In this chapter, we describe methods for finding equilibria in sufficient detail to
show how they could be implemented. We restrict ourselves to games with two players.
These can be studied using polyhedra, because a player’s expected payoffs are linear
in the mixed strategy probabilities of the other player. Nash equilibria of games with
more than two players involve expected payoffs that are products of the other players’
probabilities. The resulting polynomial equations and inequalities require different
approaches.
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For games in strategic form, we give the basic “best response condition” (Prop. 3.1,
see Section 3.2), explain the use of polyhedra (Section 3.3), and describe the Lemke–
Howson algorithm that finds one Nash equilibrium (Section 3.4). An implementation
without numerical errors uses integer pivoting (Section 3.5). “Generic” games (i.e.,
“almost all” games with real payoffs) are nondegenerate (see Definition 3.2); degenerate
games are considered in Section 3.5.

An extensive game (defined in Section 3.7) is a fundamental model of dynamic
interactions. A game tree models in detail the moves available to the players and
their information over time. The nodes of the tree represent game states. An in-
formation set is a set of states in which a player has the same moves, and does
not know which state he is in. A player’s strategy in an extensive game specifies a
move for each information set, so a player may have exponentially many strategies.
This complexity can be reduced: Subgames (see Section 3.8) are subtrees so that all
players know they are in the subgame. Finding equilibria inductively for subgames
leads to subgame perfect equilibria, but this reduces the complexity only if play-
ers are sufficiently often (e.g., always) informed about the game state. The reduced
strategic form applies to general games (see Section 3.9), but may still be expo-
nential. A player has perfect recall if his information sets reflect that he remembers
his earlier moves. Players can then randomize locally with behavior strategies. This
classic theorem (Corollary 3.12) is turned into an algorithm with the sequence form
(Sections 3.10 and 3.11) which is a strategic description that has the same size as the
game tree.

We give in this chapter an exposition of the main ideas, not of all earliest or latest
developments of the subject. Section 3.12 summarizes the main references. Further
research is outlined in Section 3.13.

3.2 Bimatrix Games and the Best Response Condition

We use the following notation throughout. Let (A, B) be a bimatrix game, where A and
B are m × n matrices of payoffs to the row player 1 and column player 2, respectively.
This is a two-player game in strategic form (also called “normal form”), which is
played by a simultaneous choice of a row i by player 1 and column j by player 2, who
then receive payoff aij and bij , respectively. The payoffs represent risk-neutral utilities,
so when facing a probability distribution, the players want to maximize their expected
payoff. These preferences do not depend on positive-affine transformations, so that A

and B can be assumed to have nonnegative entries, which are rationals, or more simply
integers, when A and B define the input to an algorithm.

All vectors are column vectors, so an m-vector x is treated as an m × 1 matrix.
A mixed strategy x for player 1 is a probability distribution on rows, written as an
m-vector of probabilities. Similarly, a mixed strategy y for player 2 is an n-vector of
probabilities for playing columns. The support of a mixed strategy is the set of pure
strategies that have positive probability. A vector or matrix with all components zero
is denoted by 0, a vector of all ones by 1. Inequalities like x ≥ 0 between two vectors
hold for all components. B� is the matrix B transposed.
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Let M be the set of the m pure strategies of player 1 and let N be the set of the n

pure strategies of player 2. It is useful to assume that these sets are disjoint, as in

M = {1, . . . , m}, N = {m + 1, . . . , m + n}. (3.1)

Then x ∈ R
M and y ∈ R

N , which means, in particular, that the components of y are
yj for j ∈ N . Similarly, the payoff matrices A and B belong to R

M×N .
A best response to the mixed strategy y of player 2 is a mixed strategy x of player 1

that maximizes his expected payoff x�Ay. Similarly, a best response y of player 2 to
x maximizes her expected payoff x�By. A Nash equilibrium is a pair (x, y) of mixed
strategies that are best responses to each other. The following proposition states that
a mixed strategy x is a best response to an opponent strategy y if and only if all pure
strategies in its support are pure best responses to y. The same holds with the roles of
the players exchanged.

Proposition 3.1 (Best response condition) Let x and y be mixed strategies of
player 1 and 2, respectively. Then x is a best response to y if and only if for all
i ∈ M ,

xi > 0 =⇒ (Ay)i = u = max{ (Ay)k | k ∈ M}. (3.2)

proof (Ay)i is the ith component of Ay, which is the expected payoff to
player 1 when playing row i. Then

x�Ay =
∑

i∈M

xi (Ay)i =
∑

i∈M

xi (u − (u − (Ay)i) = u −
∑

i∈M

xi (u − (Ay)i).

So x�Ay ≤ u because xi ≥ 0 and u − (Ay)i ≥ 0 for all i ∈ M , and x�Ay = u if
and only if xi > 0 implies (Ay)i = u, as claimed.

Proposition 3.1 has the following intuition: Player 1’s payoff x�Ay is linear in x,
so if it is maximized on a face of the simplex of mixed strategies of player 1, then it is
also maximized on any vertex (i.e., pure strategy) of that face, and if it is maximized
on a set of vertices then it is also maximized on any convex combination of them.
The proposition is useful because it states a finite condition, which is easily checked,
about all pure strategies of the player, rather than about the infinite set of all mixed
strategies. It can also be used algorithmically to find Nash equilibria, by trying out
the different possible supports of mixed strategies. All pure strategies in the support
must have maximum, and hence equal, expected payoff to that player. This leads to
equations for the probabilities of the opponent’s mixed strategy.

As an example, consider the 3 × 2 bimatrix game (A, B) with

A =
⎡

⎣
3 3
2 5
0 6

⎤

⎦ , B =
⎡

⎣
3 2
2 6
3 1

⎤

⎦ . (3.3)

This game has only one pure-strategy Nash equilibrium, namely the top row (numbered
1 in the pure strategy set M = {1, 2, 3} of player 1), together with the left column (which
by (3.1) has number 4 in the pure strategy set N = {4, 5} of player 2). A pure strategy
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equilibrium is given by mixed strategies of support size 1 each, so here it is the mixed
strategy pair ((1, 0, 0)�, (1, 0)�).

The game in (3.3) has also some mixed equilibria. Any pure strategy of a player
has a unique pure best response of the other player, so in any other equilibrium, each
player must mix at least two pure strategies to fulfill condition (3.2). In particular,
player 2 must be indifferent between her two columns. If the support of player 1’s
mixed strategy x is {1, 2}, then player 1 can make player 2 indifferent by x1 = 4/5,
x2 = 1/5, which is the unique solution to the equations x1 + x2 = 1 and (for the two
columns of B) 3x1 + 2x2 = 2x1 + 6x2. In turn, (3.2) requires that player 2 plays with
probabilities y4 and y5 so that player 1 is indifferent between rows 1 and 2, i.e.,
3y4 + 3y5 = 2y4 + 5y5 or (y4, y5) = (2/3, 1/3). The vector of expected payoffs to
player 1 is then Ay = (3, 3, 2)� so that (3.2) holds.

A second mixed equilibrium is (x, y) = ((0, 1/3, 2/3)�, (1/3, 2/3)�) with expected
payoff vectors x�B = (8/3, 8/3) and Ay = (3, 4, 4)�. Again, the support of x contains
only pure strategies i where the corresponding expected payoff (Ay)i is maximal.

A third support pair, {1, 3}, for player 1, does not lead to an equilibrium, for two
reasons. First, player 2 would have to play y = (1/2, 1/2)� to make player 1 indifferent
between row 1 and row 3. But then Ay = (3, 7/2, 3)�, so that rows 1 and 3 give the
same payoff to player 1 but not the maximum payoff for all rows. Secondly, making
player 2 indifferent via 3x1 + 3x3 = 2x1 + x3 has the solution x1 = 2, x3 = −1 in
order to have x1 + x3 = 1, so x is not a vector of probabilities.

In this “support testing” method, it normally suffices to consider supports of equal
size for the two players. For example, in (3.3) it is not necessary to consider a mixed
strategy x of player 1 where all three pure strategies have positive probability, because
player 1 would then have to be indifferent between all these. However, a mixed strategy
y of player 1 is already uniquely determined by equalizing the expected payoffs for
two rows, and then the payoff for the remaining row is already different. This is the
typical, “nondegenerate” case, according to the following definition.

Definition 3.2 A two-player game is called nondegenerate if no mixed strategy
of support size k has more than k pure best responses.

In a degenerate game, Definition 3.2 is violated, for example, if there is a pure strat-
egy that has two pure best responses. For the moment, we consider only nondegenerate
games, where the player’s equilibrium strategies have equal sized support, which is
immediate from Proposition 3.1:

Proposition 3.3 In any Nash equilibrium (x, y) of a nondegenerate bimatrix
game, x and y have supports of equal size.

The “support testing” algorithm for finding equilibria of a nondegenerate bimatrix
game then works as follows.

Algorithm 3.4 (Equilibria by support enumeration) Input: A nondegenerate
bimatrix game. Output: All Nash equilibria of the game. Method: For each k =
1, . . . , min{m, n} and each pair (I, J ) of k-sized subsets of M and N , respectively,
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solve the equations
∑

i∈I xibij = v for j ∈ J ,
∑

i∈I xi = 1,
∑

j∈J aij yj = u, for
i ∈ I ,

∑
j∈J yj = 1, and check that x ≥ 0, y ≥ 0, and that (3.2) holds for x and

analogously y.

The linear equations considered in this algorithm may not have solutions, which then
mean no equilibrium for that support pair. Nonunique solutions occur only for degen-
erate games, because a linear dependency allows to reduce the support of a mixed
strategy. Degenerate games are discussed in Section 3.6 below.

3.3 Equilibria via Labeled Polytopes

To identify the possible supports of equilibrium strategies, one can use “best response
polytopes” that express directly the inequalities of best responses and nonnegative
probabilities.

We first recall some notions from the theory of (convex) polyhedra. An affine
combination of points z1, . . . , zk in some Euclidean space is of the form

∑k
i=1 ziλi ,

where λ1, . . . , λk are reals with
∑k

i=1 λi = 1. It is called a convex combination if λi ≥ 0
for all i. A set of points is convex if it is closed under forming convex combinations.
Given points are affinely independent if none of these points are an affine combination
of the others. A convex set has dimension d if and only if it has d + 1, but no more,
affinely independent points.

A polyhedron P in R
d is a set {z ∈ R

d | Cz ≤ q} for some matrix C and vector q. It
is called full-dimensional if it has dimension d. It is called a polytope if it is bounded.
A face of P is a set { z ∈ P | c�z = q0} for some c ∈ R

d , q0 ∈ R so that the inequality
c�z ≤ q0 holds for all z in P . A vertex of P is the unique element of a zero-dimensional
face of P . An edge of P is a one-dimensional face of P . A facet of a d-dimensional
polyhedron P is a face of dimension d − 1. It can be shown that any nonempty face
F of P can be obtained by turning some of the inequalities defining P into equalities,
which are then called binding inequalities. That is, F = { z ∈ P | ciz = qi, i ∈ I },
where ciz ≤ qi for i ∈ I are some of the rows in Cz ≤ q. A facet is characterized by
a single binding inequality which is irredundant; i.e., the inequality cannot be omitted
without changing the polyhedron. A d-dimensional polyhedron P is called simple if
no point belongs to more than d facets of P , which is true if there are no special
dependencies between the facet-defining inequalities.

The “best response polyhedron” of a player is the set of that player’s mixed strategies
together with the “upper envelope” of expected payoffs (and any larger payoffs) to the
other player. For player 2 in the example (3.3), it is the set Q of triples (y4, y5, u) that
fulfill 3y4 + 3y5 ≤ u, 2y4 + 5y5 ≤ u, 0y4 + 6y5 ≤ u, y4 ≥ 0, y5 ≥ 0, and y4 + y5 = 1.
The first three inequalities, in matrix notation Ay ≤ 1u, say that u is at least as large
as the expected payoff for each pure strategy of player 1. The other constraints y ≥ 0
and 1�y = 1 state that y is a vector of probabilities. The best response polyhedron P

for player 1 is defined analogously. Generally,

P = {(x, v) ∈ R
M × R | x ≥ 0, 1�x = 1, B�x ≤ 1v},

Q = {(y, u) ∈ R
N × R | Ay ≤ 1u, y ≥ 0, 1�y = 1} .

(3.4)
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Figure 3.1. Best reponse polyhedron Q for strategies of player 2, and corresponding poly-
tope Q, which has vertices 000, p, q, r , s.

The left picture in Figure 3.1 shows Q for our example, for 0 ≤ y4 ≤ 1, which uniquely
determines y5 as 1 − y4. The circled numbers indicate the facets of Q, which are either
the strategies i ∈ M of the other player 1 or the own strategies j ∈ N . Facets 1, 2, 3 of
player 1 indicate his best responses together with his expected payoff u. For example,
1 is a best response when y4 ≥ 2/3. Facets 4 and 5 of player 2 tell when the respective
own strategy has probability zero, namely y4 = 0 or y5 = 0.

We say a point (y, u) of Q has label k ∈ M ∪ N if the kth inequality in the definition
of Q is binding, which for k = i ∈ M is the ith binding inequality

∑
j∈N aij yj = u

(meaning i is a best response to y), or for k = j ∈ N the binding inequality yj = 0.
In the example, (y4, y5, u) = (2/3, 1/3, 3) has labels 1 and 2, so rows 1 and 2 are
best responses to y with expected payoff 3 to player 1. The labels of a point (x, v)
of P are defined correspondingly: It has label i ∈ M if xi = 0, and label j ∈ N if∑

i∈M bijxi = v. With these labels, an equilibrium is a pair (x, y) of mixed strategies
so that with the corresponding expected payoffs v and u, the pair ((x, v), (y, u)) in
P × Q is completely labeled, which means that every label k ∈ M ∪ N appears as a
label either of (x, v) or of (y, u). This is equivalent to the best response condition (3.2):
A missing label would mean a pure strategy of a player, e.g., i of player 1, that does not
have probability zero, so xi > 0, and is also not a best response, since

∑
j∈N aij yj < u,

because the respective inequality i is not binding in P or Q. But this is exactly when
the best response condition is violated. Conversely, if every label appears in P or Q,
then each pure strategy is a best response or has probability zero, so x and y are mutual
best responses.

The constraints (3.4) that define P and Q can be simplified by eliminating the payoff
variables u and v, which works if these are always positive. For that purpose, assume
that

A and B� are nonnegative and have no zero column. (3.5)
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Figure 3.2. The best response polytopes P (with vertices 000, a, b, c, d, e) and Q for the game
in (3.3). The arrows describe the Lemke–Howson algorithm (see Section 3.4).

We could simply assume A > 0 and B > 0, but it is useful to admit zero matrix entries
(e.g., as in the identity matrix); even negative entries are possible as long as the upper
envelope remains positive, e.g., for a34 (currently zero) in (3.3), as Figure 3.1 shows.

For P , we divide each inequality
∑

i∈M bijxi ≤ v by v, which gives∑
i∈M bij (xi/v) ≤ 1, treat xi/v as a new variable that we call again xi , and call the

resulting polyhedron P . Similarly, Q is replaced by Q by dividing each inequality in
Ay ≤ 1u by u. Then

P = { x ∈ R
M | x ≥ 0, B�x ≤ 1},

Q = { y ∈ R
N | Ay ≤ 1, y ≥ 0} .

(3.6)

It is easy to see that (3.5) implies that P and Q are full-dimensional polytopes, unlike
P and Q. In effect, we have normalized the expected payoffs to be 1, and dropped the
conditions 1�x = 1 and 1�y = 1. Nonzero vectors x ∈ P and y ∈ Q are multiplied by
v = 1/1�x and u = 1/1�y to turn them into probability vectors. The scaling factors v

and u are the expected payoffs to the other player.
The set P is in one-to-one correspondence with P − {0} with the map (x, v) �→ x ·

(1/v). Similarly, (y, u) �→ y · (1/u) defines a bijection Q → Q − {0}. These bijections
are not linear, but are known as “projective transformations” (for a visualization see von
Stengel, 2002, Fig. 2.5). They preserve the face incidences since a binding inequality in
P (respectively, Q) corresponds to a binding inequality in P (respectively, Q) and vice
versa. In particular, points have the same labels defined by the binding inequalities,
which are some of the m + n inequalities defining P and Q in (3.6). An equilibrium
is then a completely labeled pair (x, y) ∈ P × Q − {(0, 0)}, which has for each label
i ∈ M the respective binding inequality in x ≥ 0 or Ay ≤ 1, and for each j ∈ N the
respective binding inequality in B�x ≤ 1 or y ≥ 0.

For the example (3.3), the polytope Q is shown on the right in Figure 3.1 and in
Figure 3.2. The vertices y of Q, written as y�, are (0, 0) with labels 4, 5, vertex p =
(0, 1/6) with labels 3, 4, vertex q = (1/12, 1/6) with labels 2, 3, vertex r = (1/6, 1/9)
with labels 1, 2, and s = (1/3, 0) with labels 1, 5. The polytope P is shown on the
left in Figure 3.2. Its vertices x are 0 with labels 1, 2, 3, and (written as x�) vertex
a = (1/3, 0, 0) with labels 2, 3, 4, vertex b = (2/7, 1/14, 0) with labels 3, 4, 5, vertex
c = (0, 1/6, 0) with labels 1, 3, 5, vertex d = (0, 1/8, 1/4) with labels 1, 4, 5, and
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e = (0, 0, 1/3) with labels 1, 2, 4. Note that the vectors alone show only the “own”
labels as the unplayed own strategies; the information about the other player’s best
responses is important as well. The following three completely labeled vertex pairs
define the Nash equilibria of the game, which we already found earlier: the pure
strategy equilibrium (a, s), and the mixed equilibria (b, r) and (d, q). The vertices c

and e of P , and p of Q, are not part of an equilibrium.
Nondegeneracy of a bimatrix game (A, B) can be stated in terms of the polytopes

P and Q in (3.6) as follows: no point in P has more than m labels, and no point in Q

has more than n labels. (If x ∈ P and x has support of size k and L is the set of labels
of x, then |L ∩ M| = m − k, so |L| > m implies x has more than k best responses in
L ∩ N .) Then P and Q are simple polytopes, because a point of P , say, that is on more
than m facets would have more than m labels. Even if P and Q are simple polytopes, the
game can be degenerate if the description of a polytope is redundant in the sense that
some inequality can be omitted, but nevertheless is sometimes binding. This occurs
if a player has a pure strategy that is weakly dominated by or payoff equivalent to
some other mixed strategy. Nonsimple polytopes or redundant inequalities of this kind
do not occur for “generic” payoffs; this illustrates the assumption of nondegeneracy
from a geometric viewpoint. (A strictly dominated strategy may occur generically,
but it defines a redundant inequality that is never binding, so this does not lead to a
degenerate game.)

Because the game is nondegenerate, only vertices of P can have m labels, and only
vertices of Q can have n labels. Otherwise, a point of P with m labels that is not a
vertex would be on a higher dimensional face, and a vertex of that face, which is a
vertex of P , would have additional labels. Consequently, only vertices of P and Q

have to be inspected as possible equilibrium strategies.

Algorithm 3.5 (Equilibria by vertex enumeration) Input: A nondegenerate
bimatrix game. Output: All Nash equilibria of the game. Method: For each vertex
x of P − {0}, and each vertex y of Q − {0}, if (x, y) is completely labeled, output
the Nash equilibrium (x · 1/1�x, y · 1/1�y).

Algorithm 3.5 is superior to the support enumeration Algorithm 3.4 because there are
more supports than vertices. For example, if m = n, then approximately 4n possible
support pairs have to be tested, but P and Q have less than 2.6n many vertices,
by the “upper bound theorem” for polytopes. This entails less work, assuming that
complementary vertex pairs (x, y) are found efficiently.

Enumerating all vertices of a polytope P , say, is a standard problem in computional
geometry. The elegant lrs (lexicographic reverse search) algorithm considers a known
vertex, like 0 for P in (3.6), and a linear objective function that, over P , is maximized
at that vertex, like the function x �→ −1�x. For any vertex of P , the simplex algorithm
with a unique pivoting rule (e.g., Bland’s least-index rule for choosing the entering
and leaving variable) then generates a unique path to 0, defining a directed tree on the
vertices of P with root 0. The algorithm explores that tree by a depth-first search from
0 which “reverts” the simplex steps by considering recursively for each vertex x of P

the edges to vertices x ′ so that the simplex algorithm pivots from x ′ to x.
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3.4 The Lemke–Howson Algorithm

Algorithms 3.4 and 3.5 find all Nash equilibria of a nondegenerate bimatrix game
(A, B). In contrast, the Lemke–Howson (for short LH) algorithm finds one Nash
equilibrium, and provides an elementary proof that Nash equilibria exist. The LH
algorithm follows a path (called LH path) of vertex pairs (x, y) of P × Q, for the
polytopes P and Q defined in (3.6), that starts at (0, 0) and ends at a Nash equilibrium.

An LH path alternately follows edges of P and Q, keeping the vertex in the other
polytope fixed. Because the game is nondegenerate, a vertex of P is given by m labels,
and a vertex of Q is given by n labels. An edge of P is defined by m − 1 labels. For
example, in Figure 3.2 the edge defined by labels 1 and 3 joins the vertices 0 and c.
Dropping a label l of a vertex x of P , say, means traversing the unique edge that has
all the labels of x except for l. For example, dropping label 2 of the vertex 0 of P

in Figure 3.2 gives the edge, defined by labels 1 and 3, that joins 0 to vertex c. The
endpoint of the edge has a new label, which is said to be picked up, so in the example
label 5 is picked up at vertex c.

The LH algorithm starts from (0, 0) in P × Q. This is called the artificial equi-
librium, which is a completely labeled vertex pair because every pure strategy has
probability zero. It does not represent a Nash equilibrium of the game because the zero
vector cannot be rescaled to a mixed strategy vector. An initial free choice of the LH
algorithm is a pure strategy k of a player (any label in M ∪ N), called the missing label.
Starting with (x, y) = (0, 0), label k is dropped. At the endpoint of the corresponding
edge (of P if k ∈ M , of Q if k ∈ N), the new label that is picked up is duplicate
because it was present in the other polytope. That duplicate label is then dropped in the
other polytope, picking up a new label. If the newly picked label is the missing label,
the algorithm terminates and has found a Nash equilibrium. Otherwise, the algorithm
repeats by dropping the duplicate label in the other polytope, and continues in this
fashion.

In the example (3.3), suppose that the missing label is k = 2. The polytopes P and
Q are shown in Figure 3.2. Starting from 0 in P , label 2 is dropped, traversing the edge
from 0 to vertex c, which is the set of points x of P that have labels 1 and 3, shown
by an arrow in Figure 3.2. The endpoint c of that edge has label 5 which is picked up.
At the vertex pair (c, 0) of P × Q, all labels except for the missing label 2 are present,
so label 5 is now duplicate because it is both a label of c and of 0. The next step is
therefore to drop the duplicate label 5 in Q, traversing the edge from 0 to vertex p

while keeping c in P fixed. The label that is picked up at vertex p is 3, which is now
duplicate. Dropping label 3 in P defines the unique edge defined by labels 1 and 5,
which joins vertex c to vertex d. At vertex d, label 4 is picked up. Dropping label 4
in Q means traversing the edge of Q from p to q. At vertex q, label 2 is picked up.
Because 2 is the missing label, the current vertex pair (d, q) is completely labeled, and
it is the Nash equilibrium found by the algorithm.

In terms of the game, the first two LH steps amount to taking a pure strategy (given
by the missing label k, say of player 1) and considering its best response, say j , which
defines a pure strategy pair (k, j ). If this is not already an equilibrium, the best response
i to j is not k, so that i is a duplicate label, and is now given positive probability in
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addition to k. In general, one possibility is that a duplicate label is a new best response
which in the next step gets positive probability, as in this case. Alternatively, the
duplicate label is a pure strategy whose probability has just become zero, so that it no
longer needs to be maintained as a best response in the other polytope and the path
moves away from the best response facet.

Algorithm 3.6 (Lemke–Howson) Input: Nondegenerate bimatrix game. Out-
put: One Nash equilibrium of the game. Method: Choose k ∈ M ∪ N , called the
missing label. Let (x, y) = (0, 0) ∈ P × Q. Drop label k (from x in P if k ∈ M ,
from y in Q if k ∈ N). Loop: Call the new vertex pair (x, y). Let l be the label
that is picked up. If l = k, terminate with Nash equilibrium (x, y) (rescaled as
mixed strategy pair). Otherwise, drop l in the other polytope and repeat.

The LH algorithm terminates, and finds a Nash equilibrium, because P × Q has
only finitely many vertex pairs. The next vertex pair on the path is always unique.
Hence, a given vertex pair cannot be revisited because that would provide an additional
possibility to proceed in the first place.

We have described the LH path for missing label k by means of alternating edges
between two polytopes. In fact, it is a path on the product polytope P × Q, given by
the set of pairs (x, y) of P × Q that are k-almost completely labeled, meaning that
every label in M ∪ N − {k} appears as a label of either x or y. In Figure 3.2 for k = 2,
the vertex pairs on the path are (0, 0), (c, 0), (c, p), (d, p), (d, q).

For a fixed missing label k, the k-almost completely labeled vertices and edges of the
product polytope P × Q form a graph of degree 1 or 2. Clearly, such a graph consists of
disjoints paths and cycles. The endpoints of the paths are completely labeled. They are
the Nash equilibria of the game and the artificial equilibrium (0, 0). Since the number
of endpoints of the paths is even, we obtain the following.

Corollary 3.7 A nondegenerate bimatrix game has an odd number of Nash
equilibria.

The LH algorithm can start at any Nash equilibrium, not just the artificial equilib-
rium. In Figure 3.2 with missing label 2, starting the algorithm at the Nash equilibrium
(d, q) would just generate the known LH path backward to (0, 0). When started at the
Nash equilibrium (a, s), the LH path for the missing label 2 gives the vertex pair (b, s),
where label 5 is duplicate, and then the equilibrium (b, r). This path cannot go back
to (0, 0) because the path leading to (0, 0) starts at (d, q). This gives the three Nash
equilibria of the game as endpoints of the two LH paths for missing label 2.

These three equilibria can also be found by the LH algorithm by varying the missing
label. For example, the LH path for missing label 1 in Figure 3.2 leads to (a, s), from
which (b, r) is subsequently found via missing label 2.

However, some Nash equilibria can remain elusive to the LH algorithm. An example
is the following symmetric 3 × 3 game with

A = B� =
⎡

⎣
3 3 0
4 0 1
0 4 5

⎤

⎦ . (3.7)
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Every Nash equilibrium (x, y) of this game is symmetric, i.e., x = y, where x� is
(0, 0, 1), (1/2, 1/4, 1/4), or (3/4, 1/4, 0). Only the first of these is found by the LH
algorithm, for any missing label; because the game is symmetric, it suffices to consider
the missing labels 1, 2, 3. (A symmetric game remains unchanged when the players
are exchanged; a symmetric game has always a symmetric equilibrium, but may also
have nonsymmetric equilibria, which obviously come in pairs.)

3.5 Integer Pivoting

The LH algorithm follows the edges of a polyhedron, which is implemented alge-
braically by pivoting as used by the simplex algorithm for solving a linear program. We
describe an efficient implementation that has no numerical errors by storing integers of
arbitrary precision. The constraints defining the polyhedron are thereby represented as
linear equations with nonnegative slack variables. For the polytopes P and Q in (3.6),
these slack variables are nonnegative vectors s ∈ R

N and r ∈ R
M so that x ∈ P and

y ∈ Q if and only if

B�x + s = 1, r + Ay = 1, (3.8)

and

x ≥ 0, s ≥ 0, r ≥ 0, y ≥ 0. (3.9)

A binding inequality corresponds to a zero slack variable. The pair (x, y) is completely
labeled if and only if xiri = 0 for all i ∈ M and yj sj = 0 for all j ∈ N , which by (3.9)
can be written as the orthogonality condition

x�r = 0, y�s = 0. (3.10)

A basic solution to (3.8) is given by n basic (linearly independent) columns of
B�x + s = 1 and m basic columns of r + Ay = 1, where the nonbasic variables that
correspond to the m respectively n other (nonbasic) columns are set to zero, so that the
basic variables are uniquely determined. A basic feasible solution also fulfills (3.9),
and defines a vertex x of P and y of Q. The labels of such a vertex are given by the
respective nonbasic columns.

Pivoting is a change of the basis where a nonbasic variable enters and a basic variable
leaves the set of basic variables, while preserving feasibility (3.9). We illustrate this for
the edges of the polytope P in Figure 3.2 shown as arrows, which are the edges that
connect 0 to vertex c, and c to d. The system B�x + s = 1 is here

3x1 + 2x2 + 3x3 + s4 = 1
2x1 + 6 x2 + x3 + s5 = 1

(3.11)

and the basic variables in (3.11) are s4 and s5, defining the basic feasible solution s4 = 1
and s5 = 1, which is simply the right-hand side of (3.11) because the basic columns
form the identity matrix. Dropping label 2 means that x2 is no longer a nonbasic
variable, so x2 enters the basis. Increasing x2 while maintaining (3.11) changes the
current basic variables as s4 = 1 − 2x2, s5 = 1 − 6x2, and these stay nonnegative as
long as x2 ≤ 1/6. The term 1/6 is the minimum ratio, over all rows in (3.11) with



P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 5, 2007 14:10

64 equilibrium computation for two-player games

positive coefficients of the entering variable x2, of the right-hand side divided by the
coefficient. (Only positive coefficients bound the increase of x2, which applies to at
least one row since the polyhedron P is bounded.) The minimum ratio test determines
uniquely s5 as the variable that leaves the basis, giving the label 5 that is picked up in
that step. The respective coefficient 6 of x2 is indicated by a box in (3.11), and is called
the pivot element; its row is the pivot row and its column is the pivot column.

Algebraically, pivoting is done by applying row operations to (3.11) so that the new
basic variable x2 has a unit column, so that the basic solution is again given by the
right-hand side. Integer pivoting is a way to achieve this while keeping all coefficients
of the system as integers; the basic columns then form an identity matrix multiplied by
an integer. To that end, all rows (which in (3.11) is only the first row) except for the
pivot row are multiplied with the pivot element, giving the intermediate system

18x1 + 12x2 + 18x3 + 6s4 = 6
2x1 + 6x2 + x3 + s5 = 1

(3.12)

Then, suitable multiples of the pivot row are subtracted from the other rows to obtain
zero entries in the pivot column, giving the new system

14x1 + 16 x3 + 6s4 − 2s5 = 4
2x1 + 6x2 + x3 + s5 = 1.

(3.13)

In (3.13), the basic columns for the basic variables s4 and x2 form the identity matrix,
multiplied by 6 (which is pivot element that has just been used). Clearly, all matrix
entries are integers. The next step of the LH algorithm in the example is to let y5 be the
entering variable in the system r + Ay = 1, which we do not show. There, the leaving
variable is r3 (giving the duplicate label 3) so that the next entering variable in (3.13)
is x3. The minimum ratio test (which can be performed using only multiplications,
not divisions) shows that among the nonnegativity constraints 6s4 = 4 − 16x3 ≥ 0 and
6x2 = 1 − x3 ≥ 0, the former is tighter so that s4 is the leaving variable. The pivot
element, shown by a box in (3.13), is 16, with the first row as pivot row.

The integer pivoting step is to multiply the other rows with the pivot element, giving

14x1 + 16x3 + 6s4 − 2s5 = 4
32x1 + 96x2 + 16x3 + 16s5 = 16.

(3.14)

Subsequently, a suitable multiple of the pivot row is subtracted from each other row,
giving the new system

14x1 + 16x3 + 6s4 − 2s5 = 4
18x1 + 96x2 − 6s4 + 18s5 = 12

(3.15)

with x3 and x2 as basic variables. However, except for the pivot row, the unchanged
basic variables have larger coefficients than before, because they have been multiplied
with the new pivot element 16. The second row in (3.15) can now be divided by the
previous pivot element 6, and this division is integral for all coefficients in that row;
this is the key feature of integer pivoting, explained shortly. The new system is

14x1 + 16x3 + 6s4 − 2s5 = 4
3x1 + 16x2 − s4 + 3s5 = 2.

(3.16)
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This is the final system because the duplicate label 4 (given by the variable s4 that has
just left) is dropped in Q, where the missing label 2 is picked up. The basic solution in
(3.16) is vertex d of P with x3 = 4/16, x2 = 2/16, and labels (given by the nonbasic
columns) 1, 4, and 5.

Integer pivoting, as illustrated in this example, always maintains an integer matrix
(or “tableau”) of coefficients of a system of linear equations that is equivalent to the
original system B�x + s = 1, in the form

CB�x + Cs = C1. (3.17)

In (3.17), C is the inverse of the basis matrix given by the basic columns of the original
system, multiplied by the determinant of the basis matrix (which is 6 in (3.13), and
16 in (3.16)). The matrix C is given by the (integer) cofactors of the basis matrix; the
cofactor of a matrix entry is the determinant of the matrix when the row and column
of that element are deleted. Each entry in (3.17) has a bounded number of digits (by at
most a factor of n log n compared to the original matrix entries), so integer pivoting is
a polynomial-time algorithm. It is also superior to using fractions of integers (rational
numbers) because their cancelation requires greatest common divisor computations
that take the bulk of computation time. Only the final fractions defining the solution,
like x3 = 4/16 and x2 = 2/16 in (3.16), may have to be canceled.

3.6 Degenerate Games

The uniqueness of an LH path requires a nondegenerate game. In a degenerate game, a
vertex of P , for example, may have more than m labels. When that vertex is represented
as a basic feasible solution as in (3.17) this means that not only the m nonbasic variables
are zero, but also at least one basic variable. Such a degenerate basic feasible solution
results from a pivoting step where the leaving variable (representing the label that is
picked up) is not unique.

As an example, consider the 3 × 2 game

A =
⎡

⎣
3 3
2 5
0 6

⎤

⎦ , B =
⎡

⎣
3 3
2 6
3 1

⎤

⎦ , (3.18)

which agrees with (3.3) except that b15 = 3. The polytope Q for this game is the same
as before, shown on the right in Figure 3.2. The polytope P is the convex hull of the
original vertices 0, a, c, d, e shown on the left in Figure 3.2, so vertex b has merged
with a. The new facets of P with labels 4 and 5 are triangles with vertices a, d, e and
a, c, d, respectively.

In this example (3.18), the first step of the LH path for missing label 1 would be
from (0, 0) to (a, 0), where the two labels 4 and 5 are picked up, because vertex a

has the four labels 2, 3, 4, 5 due to the degeneracy. If then label 4 is dropped in Q,
the algorithm finds the equilibrium (a, s) and no problem occurs. However, dropping
label 5 in Q would mean a move to (a, p) where label 3 is picked up, and none of the
two edges of P that move away from the facet with label 3 (which are the edges from
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a to d and from a to e) would, together with p, be 1-almost completely labeled, so the
algorithm fails at this point.

Degeneracy can be resolved by perturbing the linear system lexicographically,
which is well known from linear programming. Assume that the system B�x + s =
1, say, is changed to the perturbed system B�x + s = 1 + (ε1, . . . , εn)�. After any
number of pivoting steps, this system has the form

CB�x + Cs = C1 + C(ε1, . . . , εn)� (3.19)

for some invertible matrix C. The corresponding unperturbed basic feasible solution
may have a zero basic variable, which is a row of C1, but for sufficiently small ε > 0 it
is positive if and only if in that row the first nonzero entry of the matrix C is positive; this
is the invariant maintained by the algorithm, using a more general “lexico-minimum”
ratio test. No actual perturbance is required, and C is already stored in the system as
the matrix of coefficients of s, as seen from (3.19).

Degenerate games may have infinite sets of equilibria. In the example (3.18), vertex
a of P , which represents the pure strategy (1, 0, 0)� of player 1, together with the
entire edge that joins vertices r and s of Q, defines a component of Nash equilibria,
where player 2 plays some mixed strategy (y4, 1 − y4) for 2/3 ≤ y4 ≤ 1. However, this
equilibrium component is a convex combination of the “extreme” equilibria (a, r) and
(a, s). In general, even in a degenerate game, the Nash equilibria can be described in
terms of pairs of vertices of P and Q. We write conv U for the convex hull of a set U .

Proposition 3.8 Let (A, B) be a bimatrix game, and (x, y) ∈ P × Q. Then
(x, y) (rescaled) is a Nash equilibrium if and only if there is a set U of vertices of
P − {0} and a set V of vertices of Q − {0} so that x ∈ conv U and y ∈ conv V ,
and every (u, v) ∈ U × V is completely labeled.

Proposition 3.8 holds because labels are preserved under convex combinations, and
because every face of P or Q has the labels of its vertices, which are vertices of the
entire polytope; for details see von Stengel (2002, Thm. 2.14).

The following algorithm, which extends Algorithm 3.5, outputs a complete descrip-
tion of all Nash equilibria of a bimatrix game: Define a bipartite graph on the vertices
of P − {0} and Q − {0}, whose edges are the completely labeled vertex pairs (x, y).
The “cliques” (maximal complete bipartite subgraphs) of this graph of the form U × V

then define sets of Nash equilibria conv U × conv V whose union is the set of all Nash
equilibria. These sets are called “maximal Nash subsets.” They may be nondisjoint,
if they contain common points (x, y). The connected unions of these sets are usually
called the (topological) components of Nash equilibria.

3.7 Extensive Games and Their Strategic Form

A game in strategic form is a “static” description of an interactive situation, where play-
ers act simultaneously. A detailed “dynamic” description is an extensive game where
players act sequentially, where some moves can be made by a chance player, and where
each player’s information about earlier moves is modeled in detail. Extensive games are
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Figure 3.3. Left: A game in extensive form. Top right: Its strategic form payoff matrices A and B.
Bottom right: Its sequence form payoff matrices A and B, where rows and columns correspond
to the sequences of the players which are marked at the side. Any sequence pair not leading
to a leaf has matrix entry zero, which is left blank.

a fundamental representation of dynamic interactions which generalizes other models
like repeated and multistage games, or games with incomplete information.

The basic structure of an extensive game is a directed tree. The nodes of the tree
represent game states. Trees (rather than general graphs) are used because then a game
state encodes the full history of play. Only one player moves at any one state along
a tree edge. The game starts at the root (initial node) of the tree and ends at a leaf
(terminal node), where each player receives a payoff. The nonterminal nodes are called
decision nodes. A player’s possible moves are assigned to the outgoing edges of the
decision node.

The decision nodes are partitioned into information sets. All nodes in an information
set belong to the same player, and have the same moves. The interpretation is that when
a player makes a move, he only knows the information set but not the particular node
he is at. In a game with perfect information, all information sets are singletons (and
can therefore be omitted). We denote the set of information sets of player i by Hi ,
information sets by h, and the set of moves at h by Ch.

Figure 3.3 shows an example of an extensive game. Moves are marked by upper-case
letters for player 1 and by lowercase letters for player 2. Information sets are indicated
by ovals. The two information sets of player 1 have move sets {L, R} and {S, T }, and
the information set of player 2 has move set {l, r}. A play of the game may proceed
by player 1 choosing L, player 2 choosing r , and player 1 choosing S, after which the
game terminates with payoffs 5 and 6 to players 1 and 2. By definition, move S of
player 1 is the same, no matter whether player 2 has chosen l or r , because player 1
does not know the game state in his second information set.

At some decision nodes, the next move may be a chance move. Chance is here
treated as an additional player 0, who receives no payoff and who plays according to
a known behavior strategy. A behavior strategy of player i is given by a probability
distribution on Ch for all h in Hi . (The information sets belonging to the chance player
are singletons.) A pure strategy is a behavior strategy where each move is picked
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deterministically. A pure strategy of player i can be regarded as an element 〈ch〉h∈Hi
of∏

h∈Hi
Ch, that is, as a tuple of moves, like 〈L, S〉 for player 1 in Figure 3.3.

Tabulating all pure strategies of the players and recording the resulting expected
payoffs defines the strategic form of the game. In Figure 3.3, the strategic form of the
extensive game is shown at the top right, with payoff matrices A and B to player 1 and
player 2.

Given the strategic form, a player can play according to a mixed strategy, which is
a probability distribution on pure strategies. The player chooses a pure strategy, which
is a complete plan of action, according to this distribution, and plays it in the game.
In contrast, a behavior strategy can be played by “delaying” the random move until
the player reaches the respective information set. It can be considered as a special
mixed strategy since it defines a probability for every pure strategy, where the moves
at information sets are chosen independently.

We consider algorithms for finding Nash equilibria of an extensive game, with the
tree together with the described game data as input. The strategic form is bad for this
purpose because it is typically exponentially large in the game tree. As described in
the subsequent sections, this complexity can be reduced, in some cases by considering
subgames and corresponding subgame perfect equilibria. The reduced strategic form of
the game is smaller but may still be exponentially large. A reduction from exponential
to linear size is provided by the sequence form, which allows one to compute directly
behavior strategies rather than mixed strategies.

3.8 Subgame Perfect Equilibria

A subgame of an extensive game is a subtree of the game tree that includes all infor-
mation sets containing a node of the subtree. Figure 3.3 has a subgame starting at the
decision node of player 2; the nodes in the second information set of player 1 are not
roots of subgames because player 1 does not know that he is in the respective subtree.
In the subgame, player 2 moves first, but player 1 does not get to know that move.
So this subgame is equivalent to a 2 × 2 game in strategic form where the players act
simultaneously. (In this way, every game in strategic form can be represented as a game
in extensive form.)

The subgame in Figure 3.3 has a unique mixed equilibrium with probability 2/3 for
the moves T and r , respectively, and expected payoff 4 to player 1 and 8/3 to player 2.
Replacing the subgame by the payoff pair (4, 8/3), one obtains a very simple game
with moves L and R for player 1, where L is optimal. So player 1’s mixed strategy
with probabilities 1/3 and 2/3 for 〈L, S〉 and 〈L, T 〉 and player 2’s mixed strategy
(1/3, 2/3) for l, r define a Nash equilibrium of the game. This is the, here unique,
subgame perfect equilibrium of the game, defined by the property that it induces a
Nash equilibrium in every subgame.

Algorithm 3.9 (Subgame perfect equilibrium) Input: An extensive game.
Output: A subgame perfect Nash equilibrium of the game. Method: Consider,
in increasing order of inclusion, each subgame of the game, find a Nash equilib-
rium of the subgame, and replace the subgame by a new terminal node that has
the equilibrium payoffs.
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In a game with perfect information, every node is the root of a subgame. Then Algo-
rithm 3.9 is the well-known, linear time backward induction method, also sometimes
known as “Zermelo’s algorithm.” Because the subgame involves only one player in
each iteration, a deterministic move is optimal, which shows that any game with perfect
information has a (subgame perfect) Nash equilibrium where every player uses a pure
strategy.

In games with imperfect information, a subgame perfect equilibrium may require
mixed strategies, as Figure 3.3 demonstrates.

3.9 Reduced Strategic Form

Not all extensive games have nontrivial subgames, and one may also be interested
in equilibria that are not subgame perfect. In Figure 3.3, such an equilibrium is the
pure strategy pair (〈R, S〉, l). Here, player 2 is indifferent between her moves l and r

because the initial move R of player 1 means that player 2 never has to make move l

or r , so player 2 receives the constant payoff 3 after move R. If play actually reached
player 2’s information set, move l would not be optimal against S, which is why this is
not a subgame perfect equilibrium. Player 2 can, in fact, randomize between l and r ,
and as long as l is played with probability at least 2/3, 〈R, S〉 remains a best response
of player 1, as required in equilibrium.

In this game, the pure strategies 〈R, S〉 and 〈R, T 〉 of player 1 are overspecific
as “plans of action”: the initial move R of player 1 makes the subsequent choice
of S or T irrelevant since player 1’s second information set cannot be reached after
move R. Consequently, the two payoff rows for 〈R, S〉 and 〈R, T 〉 are identical for both
players. In the reduced strategic form, moves at information sets that cannot be reached
because of an earlier own move are identified. In Figure 3.3, this reduction yields the
pure strategy (more precisely, equivalence class of pure strategies) 〈R, ∗〉, where ∗
denotes an arbitrary move. The two (reduced as well as unreduced) pure strategies of
player 2 are her moves l and r .

The reduced strategic form of Figure 3.3 corresponds to the bimatrix game (3.18) if
〈R, ∗〉 is taken as the first strategy (top row) of player 1. This game is degenerate even
if the payoffs in the extensive game are generic, because player 2, irrespective of her
own move, receives constant payoff 3 when player 1 chooses 〈R, ∗〉.

Once a two-player extensive game has been converted to its reduced strategic form,
it can be considered as a bimatrix game, where we refer to its rows and columns as the
“pure strategies” of player 1 and 2, even if they leave moves at unreachable information
sets unspecified.

The concept of subgame perfect equilibrium requires fully specified strategies,
rather than reduced strategies. For example, it is not possible to say whether the Nash
equilibrium (〈R, ∗〉, l) of the reduced strategic form of the game in Figure 3.3 is
subgame perfect or not, because player 1’s behavior at his second information set is
unspecified. This could be said for a Nash equilibrium of the full strategic form with
two rows 〈R, S〉 and 〈R, T 〉. However, these identical two rows are indistinguishable
computationally, so there is no point in applying an algorithm to the full rather than the
reduced strategic form, because any splitting of probabilities between payoff-identical
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strategies would be arbitrary. If one is interested in finding subgame perfect equilibria,
one should use Algorithm 3.9. At each stage of that algorithm, the considered games
have by definition no further subgames, and equilibria of these games can be found
using the reduced strategic form or the sequence form.

A player may have parallel information sets that are not distinguished by own
earlier moves. These arise when a player receives information about an earlier move by
another player. Combinations of moves at parallel information sets cannot be reduced,
which causes a multiplicative growth of the number of reduced strategies. In general,
the reduced strategic form can therefore still be exponential in the size of the game tree.

3.10 The Sequence Form

In the reduced strategic form, pure strategies are only partially specified, by omitting
moves at information sets that cannot be reached because of an own earlier move. In
the sequence form, pure strategies are replaced by an even more partial description
of sequences which specify a player’s moves only along a path in the game tree. The
number of these paths, and therefore of these sequences, is bounded by the number
of nodes of the tree. However, randomizing between such sequences can no longer be
described by a single probability distribution, but requires a system of linear equations.

A sequence of moves of player i is the sequence of his moves (disregarding the
moves of other players) on the unique path from the root to some node t of the tree, and
is denoted σi(t). For example, for the leftmost leaf t in Figure 3.3 this sequence is LS

for player 1 and l for player 2. The empty sequence is denoted ∅. Player i has perfect
recall if and only if σi(s) = σi(t) for any nodes s, t ∈ h and h ∈ Hi . Then the unique
sequence σi(t) leading to any node t in h will be denoted σh. Perfect recall means that
the player cannot get additional information about his position in an information set
by remembering his earlier moves. We assume all players have perfect recall.

Let βi be a behavior strategy of player i. The move probabilities βi(c) fulfill
∑

c∈Ch

βi(c) = 1, βi(c) ≥ 0 for h ∈ Hi , c ∈ Ch. (3.20)

The realization probability of a sequence σ of player i under βi is

βi[σ ] =
∏

c in σ

βi(c). (3.21)

An information set h in Hi is called relevant under βi if βi[σh] > 0, otherwise irrelevant,
in agreement with irrelevant information sets as considered in the reduced strategic
form.

Let Si be the set of sequences of moves for player i. Then any σ in Si is either the
empty sequence ∅ or uniquely given by its last move c at the information set h in Hi ,
that is, σ = σhc. Hence,

Si = { ∅ } ∪ { σhc | h ∈ Hi, c ∈ Ch }.
This implies that the number of sequences of player i, apart from the empty sequence,
is equal to his total number of moves, that is, |Si | = 1 + ∑

h∈Hi
|Ch|. This number is

linear in the size of the game tree.
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Let β1 and β2 denote behavior strategies of the two players, and let β0 be the known
behavior of the chance player. Let a(t) and b(t) denote the payoffs to player 1 and
player 2, respectively, at a leaf t of the tree. The probability of reaching t is the product
of move probabilities on the path to t . The expected payoff to player 1 is therefore

∑

leaves t

a(t) β0[σ0(t)] β1[σ1(t)] β2[σ2(t)] , (3.22)

and the expected payoff to player 2 is the same expression with b(t) instead of a(t).
However, the expected payoff is nonlinear in terms of behavior strategy probabilities
βi(c) since the terms βi[σi(t)] are products by (3.21).

Therefore, we consider directly the realization probabilities βi[σ ] as functions of
sequences σ in Si . They can also be defined for mixed strategies µi of player i,
which choose each pure strategy πi of player i with probability µi(πi). Under πi , the
realization probability of σ in Si is πi[σ ], which is equal to 1 if πi prescribes all the
moves in σ and zero otherwise. Under µi , the realization probability of σ is

µi[σ ] =
∑

πi

µi(πi)πi[σ ]. (3.23)

For player 1, this defines a map x from S1 to R by x(σ ) = µ1[σ ] for σ ∈ S1. We call
x the realization plan of µ1 or a realization plan for player 1. A realization plan for
player 2, similarly defined on S2 by a mixed strategy µ2, is denoted y. Realization
plans have two important properties.

Proposition 3.10 A realization plan x of a mixed strategy of player 1 fulfills
x(σ ) ≥ 0 for all σ ∈ S1 and

x(∅) = 1,
∑

c∈Ch

x(σhc) = x(σh) for all h ∈ H1. (3.24)

Conversely, any x : S1 → R with these properties is the realization plan of a
behavior strategy of player 1, which is unique except at irrelevant information
sets. A realization plan y of player 2 is characterized analogously.

For the second property, two mixed strategies are called realization equivalent if
they reach any node of the tree with the same probabilities, given any strategy of the
other player. We can assume that all chance probabilities β0(c) are positive, by pruning
any tree branches that are unreached by chance.

Proposition 3.11 Two mixed strategies µi and µ′
i of player i are realization

equivalent if and only if they have the same realization plan, that is, µi[σ ] = µ′
i[σ ]

for all σ ∈ Si .

These two propositions (to be proved in Exercise 3.13) imply the well-known
result by Kuhn (1953) that behavior strategies are strategically as expressive as mixed
strategies.

Corollary 3.12 (Kuhn’s theorem) For a player with perfect recall, any mixed
strategy is realization equivalent to a behavior strategy.
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Proposition 3.10 characterizes realization plans by nonnegativity and the equations
(3.11). A realization plan describes a behavior strategy uniquely except for the moves
at irrelevant information sets. In particular, the realization plan of a pure strategy (that
is, a realization plan with values 0 or 1) is as specific as a reduced pure strategy.

A realization plan represents all the relevant strategic information of a mixed strategy
by Proposition 3.11. This compact information is obtained with the linear map in (3.23).
This map assigns to any mixed strategy µi , regarded as a tuple of mixed strategy
probabilities µi(πi), its realization plan, regarded as a tuple of realization probabilities
µi[σ ] for σ in Si . The simplex of mixed strategies is thereby mapped to the polytope of
realization plans defined by the linear constraints in Proposition 3.10. The vertices of
this polytope are the realization plans of pure strategies. The number of these vertices
may be exponential. However, the number of defining inequalities and the dimension
of the polytope is linear in the tree size. For player i, this dimension is the number
|Si | of variables minus the number 1 + |Hi | of equations (3.24) (which are linearly
independent), so it is

∑
h∈Hi

(|Ch| − 1).
We consider realization plans as vectors in x ∈ R

|S1| and y ∈ R
|S2|, that is,

x = (xσ )σ∈S1 where xσ = x(σ ), and similarly y = (yτ )τ∈S2 . The linear constraints in
Proposition 3.10 are denoted by

Ex = e, x ≥ 0 and Fy = f, y ≥ 0, (3.25)

using the constraint matrices E and F and vectors e and f . The matrix E and right-
hand side e have 1 + |H1| rows, and E has |S1| columns. The first row denotes the
equation x(∅) = 1 in (3.24). The other rows for h ∈ H1 are the equations −x(σh) +∑

c∈Ch
x(σhc) = 0.

In Figure 3.3, the sets of sequences are S1 = {∅, L, R, LS, LT } and S2 = {∅, l, r},
and in (3.25),

E =
⎡

⎣
1

−1 1 1
−1 1 1

⎤

⎦ , e =
⎡

⎣
1
0
0

⎤

⎦ , F =
[

1
−1 1 1

]
, f =

[
1
0

]
.

Each sequence appears exactly once on the left-hand side of the equations (3.24),
accounting for the entry 1 in each column of E and F . The number of information sets
and therefore the number of rows of E and F is at most linear in the size of the game
tree.

Define the sequence form payoff matrices A and B, each of dimension |S1| × |S2|,
as follows. For σ ∈ S1 and τ ∈ S2, let the matrix entry aστ of A be defined by

aστ =
∑

leaves t : σ1(t)=σ, σ2(t)=τ

a(t) β0[σ0(t)] . (3.26)

The matrix entry of B is this term with b instead of a. An example is shown on the
bottom right in Figure 3.3. These two matrices are sparse, since the matrix entry for a
pair σ, τ of sequences is zero (the empty sum) whenever these sequences do not lead
to a leaf. If they do, the matrix entry is the payoff at the leaf (or leaves, weighted with
chance probabilities of reaching the leaves, if there are chance moves). Then by (3.22),
the expected payoffs to players 1 and 2 are x�Ay and x�By, respectively, which is
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just another way of writing the weighted sum over all leaves. The constraint and payoff
matrices define the sequence form of the game.

3.11 Computing Equilibria with the Sequence Form

Realization plans in the sequence form take the role of mixed strategies in the strategic
form. In fact, mixed strategies x and y are a special case, by letting E and F in (3.25)
be single rows 1� and e = f = 1. The computation of equilibria with the sequence
form uses linear programming duality, which is also of interest for the strategic form.

Consider a fixed realization plan y of player 2. A best response x of player 1 is a
realization plan that maximizes his expected payoff x�(Ay). That is, x is a solution to
the linear program (LP)

maximize x�(Ay) subject to Ex = e, x ≥ 0. (3.27)

This LP has a dual LP with a vector u of unconstrained variables whose dimension is
1 + |H1|, the number of rows of E. This dual LP states

minimize e�u subject to E�u ≥ Ay. (3.28)

Both LPs have feasible solutions, so by the strong duality theorem of linear program-
ming, they have the same optimal value.

Consider now a zero-sum game, where B = −A. Player 2, when choosing y, has
to assume that her opponent plays rationally and maximizes x�Ay. This maximum
payoff to player 1 is the optimal value of the LP (3.27), which is equal to the optimal
value e�u of the dual LP (3.28). Player 2 is interested in minimizing e�u by her choice
of y. The constraints of (3.28) are linear in u and y even if y is treated as a variable.
So a minmax realization plan y of player 2 (minimizing the maximum amount she has
to pay) is a solution to the LP

minimize
u, y

e�u subject to Fy = f, E�u − Ay ≥ 0, y ≥ 0. (3.29)

The dual of this LP has variables v and x corresponding to the primal constraints
Fy = f and E�u − Ay ≥ 0, respectively. It has the form

maximize
v, x

f �v subject to Ex = e, F�v − A�x ≤ 0, x ≥ 0. (3.30)

It is easy to verify that this LP describes the problem of finding a maxmin realization
plan x (with maxmin payoff f �v) for player 1.

This implies, first, that any zero-sum game has an equilibrium (x, y). More impor-
tantly, given an extensive game, the number of nonzero entries in the sparse matrices
E, F, A, and the number of variables, is linear in the size of the game tree. Hence, we
have shown the following.

Theorem 3.13 The equilibria of a two-person zero-sum game in extensive form
with perfect recall are the solutions to the LP (3.29) with sparse payoff matrix A

in (3.26) and constraint matrices E and F in (3.25) defined by Prop. 3.10. The
size of this LP is linear in the size of the game tree.
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A best response x of player 1 against the mixed strategy y of player 2 is a solution
to the LP (3.27). This is also useful for games that are not zero-sum. By strong duality,
a feasible solution x is optimal if and only if there is a dual solution u fulfilling
E�u ≥ Ay and x�(Ay) = e�u, that is, x�(Ay) = (x�E�)u or equivalently

x�(E�u − Ay) = 0 . (3.31)

Because the vectors x and E�u − Ay are nonnegative, (3.31) states that they are
complementary in the sense that they cannot both have positive components in the same
position. This characterization of an optimal primal-dual pair of feasible solutions is
known as complementary slackness in linear programming. For the strategic form, this
condition is equivalent to the best response condition (3.2).

For player 2, the realization plan y is a best response to x if and only if it maximizes
(x�B)y subject to Fy = f , y ≥ 0. The dual of this LP has the vector v of variables and
says: minimize f �v subject to F�v ≥ B�x. Here, a primal-dual pair y, v of feasible
solutions is optimal if and only if, analogous to (3.31),

y�(F�v − B�x) = 0 . (3.32)

Considering these conditions for both players, this shows the following.

Theorem 3.14 Consider the two-person extensive game with sequence form
payoff matrices A, B and constraint matrices E, F . Then the pair (x, y) of re-
alization plans defines an equilibrium if and only if there are vectors u, v so
that

Ex = e, x ≥ 0, Fy = f, y ≥ 0,

E�u − Ay ≥ 0, F�v − B�x ≥ 0
(3.33)

and (3.31), (3.32) hold. The size of the matrices E, F, A, B is linear in the size
of the game tree.

The conditions (3.33) define a linear complementarity problem (LCP). For a game
in strategic from, (3.8), (3.9), and (3.10) define also an LCP, to which the LH algorithm
finds one solution. For a general extensive game, the LH algorithm cannot be applied
to the LCP in Theorem 3.14, because u and v are not scalar dual variables that
are easily eliminated from the system. Instead, it is possible to use a variant called
Lemke’s algorithm. Similar to the LH algorithm, it introduces a degree of freedom
to the system, by considering an additional column for the linear equations and a
corresponding variable z0 which is initially nonzero, and which allows for an initial
feasible solution where x = 0 and y = 0. Then a binding inequality in r = E�u −
Ay ≥ 0 (or s = F�v − B�x ≥ 0) means that a basic slack variable rσ (or sτ ) can leave
the basis, with xσ (respectively, yτ ) entering, while keeping (3.10). Like in the LH
algorithm, this “complementary pivoting rule” continues until an equilibrium is found,
here when the auxiliary variable z0 leaves the basis.
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3.12 Further Reading

A scholarly and more comprehensive account of the results of this chapter is von
Stengel (2002). The best response condition (Proposition 3.1) is due to Nash (1951).
Algorithm 3.4 is folklore, and has been used by Dickhaut and Kaplan (1991). Polyhedra
are explained in Ziegler (1995). Shapley (1974) introduced distinct labels as in (3.1)
to visualize the LH algorithm. He labels subdivisions of the mixed strategy simplices,
ignoring the payoff components in P and Q in (3.4). We prefer the polytope view using
P and Q in (3.6), which simplifies the LH algorithm. Moreover, this view is useful for
constructing games with many equilibria (von Stengel, 1999) that come close to the
upper bound theorem for polytopes (Keiding, 1997; McMullen, 1970) , and for games
with exponentially long LH paths (Savani and von Stengel, 2006).

Algorithm 3.5 is suggested in (Kuhn, 1961; Mangasarian, 1964; Vorob’ev, 1958).
The lrs method for vertex enumeration is due to (Avis, 2005; Avis and Fukuda, 1992).
An equilibrium enumeration that (implicitly) alternates between P and Q is Audet
et al. (2001). It has been implemented with integer pivoting (like lrs) by Rosenberg
(2004).

The LH algorithm is due to Lemke and Howson (1964). Shapley (1974) also shows
that the endpoints of an LH path are equilibria of different index, which is an orientation
defined by determinants, explored further in von Schemde (2005). A recent account of
integer pivoting is Azulay and Pique (2001). Proposition 3.8 is due to Winkels (1979)
and Jansen (1981).

Extensive games with information sets are due to Kuhn (1953). Subgame perfection
(Selten, 1975) is one of many refinements of Nash equilibria (von Damme, 1987).
Main ideas of the sequence form have been discovered independently by (Koller and
Megiddo, 1992; Romanovskii, 1962; von Stengel, 1996). Lemke’s algorithm (Lemke,
1965) is applied to the sequence form in Koller et al. (1996); von Stengel et al. (2002).

A recent paper, with further references, on algorithms for finding equilibria of games
with more than two players, is Datta (2003).

3.13 Discussion and Open Problems

We have described the basic mathematical structure of Nash equilibria for two-player
games, namely polyhedra and the complementarity condition of best responses. The
resulting algorithms should simplify the analysis of larger games as used by applied
game theorists. At present, existing software packages (Avis, 2005; Canty, 2003; McK-
elvey et al., 2006) are prototypes that are not easy to use. Improved implementations
should lead to more widespread use of the algorithms, and reveal which kinds of
games practitioners are interested in. If the games are discretized versions of games
in economic settings, enumerating all equilibria will soon hit the size barriers of these
exponential algorithms. Then the LH algorithm may possibly be used to give an indi-
cation if the game has only one Nash equilibrium, or Lemke’s method with varying
starting point as in von Stengel et al. (2002). This should give practical evidence if
these algorithms have usually good running times, as is widely believed, in contrast to
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the extremal examples in Savani and Stengel (2006). An open theoretical question is if
LH, or Lemke’s algorithm, has expected polynomial running time, as it is known for
the simplex method, for suitable probabilistic assumptions on the instance data.

The computational complexity of finding one Nash equilibrium of a two-player
game, as discussed in Chapter 2, is open in the sense that not even a subexponential
algorithm is known. Incremental or divide-and-conquer approaches, perhaps using the
polyhedral structure, require a generalization of the equilibrium condition, because
equilibria typically do not result from equilibria of games with fewer strategies. At
the same time, such an approach must not maintain the entire set of Nash equilibria,
because questions about that set (such as uniqueness, see Theorem 2.3) are typically
NP-hard.

Extensive games are a general model of dynamic games. The condition of perfect
recall leads to canonical representations and algorithms, as described. Special types of
extensive games, like repeated games and Bayesian games, are widely used in applied
game theory. Finding equilibria of these models – where that task is difficult – should
give a focus for further research.
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Exercises

3.1 Prove the claim made after Algorithm 3.4 that nonunique solutions to the equations
in that algorithm occur only for degenerate games.

3.2 Show that in an equilibrium of a nondegenerate game, all pure best responses are
played with positive probability.

3.3 Give further details of the argument made after Algorithm 3.6 that LH terminates.
A duplicate label of a vertex pair (x , y) can be dropped in either polytope. Interpret
these two possibilities.

3.4 Why is every pure strategy equilibrium found by LH for a suitable missing label?

3.5 Show that the “projection” to polytope P , say, of a LH path from (x , y) to (x ′, y′)
in P × Q is also a path in P from x to x ′. Hence, if (x , y) is an equilibrium, where
can x be on that projected path?

3.6 Verify the LH paths for the example (3.7).



P1: SBT

9780521872829main CUNY1061-Nisan 0 521 87282 0 July 5, 2007 14:10

78 equilibrium computation for two-player games

3.7 Apply integer pivoting to the system r + Ay = 1 in the example, omitted after
(3.13).

3.8 After (3.14), what is the multiplier in the “suitable multiple of the pivot row”? Give
formulas for the update rules of the tableau.

3.9 Draw the polytope P for the game (3.18), and verify that the described naive use
of LH fails.

3.10 Implement the lexico-minimum ratio test for the system (3.19) using the data in
(3.17); you need a suitable array to identify the order of the basic variables.

3.11 Adapt a clique enumeration algorithm for graphs such as (Bron and Kerbosch,
1973) to find all maximal Nash subsets (see at the end of Section 3.6).

3.12 Consider an extensive game with a binary game tree of depth L (and thus 2L

leaves), where the two players alternate and are informed about all past moves
except for the last move of the other player (see von Stengel et al., 2002). How
many reduced strategies do the players have?

3.13 Prove Proposition 3.10, using (3.20), (3.21), and (3.23). Prove Proposition 3.11.

3.14 Write down the LCP of Theorem 3.14 for the game in Figure 3.3. Find all its
solutions, for example with a variant of Algorithm 3.4.


